Образец
UDC 57.05: 616.72-008.8
Production Technology and Physicochemical Properties
of Composition Containing Surfactant Proteins
Valery V. Novochadov a , * , Pavel A. Krylov a
a Volgograd State University, Russian Federation
Abstract
The article describes a production method of substance containing great amount of phospolipids (up to 36 %) and surfactant proteins (up to 2 %) in terms of lyophilisate composition. Basic physical and chemical characteristics of the substance (density, viscosity, surface tension and the coefficient of sliding friction) indicate a high lubricant capacity of the derived product. These properties are kept when mixed with native human synovial fluid in the ratio of 1 to 9 inclusive. The obtained data allows to consider the derived composition, containing surfactant proteins and phospholipids, a variety of bionic lubricant suitable for testing as a potential equivalent of synovial fluid which can be used in traumatology and orthopedics, a cosmetic component or agent which increases the stability of the cell suspension during culturing in bioreactors.
Keywords: pulmonary surfactant, surfactant proteins, phospholipids, boundary lubrication, viscosity, tribology, articular cartilage; cartilage tissue engineering, surface friction
1. Introduction
We are now actively developing technologies of the creation and production of synthetic lubricants and their modifications to apply in different lines of industry, agriculture, medicine and veterinary medicine. Talking about the necessity to provide the contact of lubricant with biological objects, we find the biomimetic approach most effective, as it involves the production and application of the lubricants, which properties are maximally close to natural (Wang, 2014; Hwang et al., 2015; Park et al., 2016). One of the most promising sources of natural lubricants are surfactant mixtures produced from mammals' lung containing specific surfactant proteins (SP) and phospholipids (Sarker et al., 2011; Casals, Cañadas, 2012; Schenck, Fiegel, 2016).
2. Material and Methods
Obtaining substance containing surfactant proteins
The experiment involved 16 white male rats of Wistar line 6 months old weighing 180-240 g Protocol of experiments comply with the ethical standards set out in the "Code of Good Practice in Research involving animal experimentation" and Directive 2010/63 / EU of the European Parliament and of the Council of the European Union on the protection of animals used for scientific purposes.
3. Results
The composition of SCSP according to the results of the definition included lipids (mostly - phospholipids), fractions of proteins with mass 16-24 kD (including the subunit SP - B, SP - C) and mass32-48 kD (including SP - D and some of SP - A), a small amount of impurity protein fractions and mineral salts.
4. Discussion
Protein-containing bionic lubricants are able to provide a so-called boundary lubrication that means the lubrication, which is effective at high pressures and minimum layer of lubricating substance (McNary et al., 2012; Lu, 2009; Greene et al., 2011). Thus, hyaluronic acid is responsible for hydrodynamic lubrication at moderate pressures and the sufficient layer of the synovial fluid layer between the joint surfaces, and in case of direct contact of cartilage and high pressure of the contact - specific glycoprotein lubricin weighting 227 kDa (Flannery et al., 2009; Novochadov et al., 2014; Ludwig et al., 2015). Similar mechanisms are required in terms of maintaining the elasticity of the alveoli, which is provided by the surfactant lung system having a high grade of homology with lubricin, primarily due to the presence of mucin domain fragment (Blanco, Pérez-Gil, 2007, Fathi-Azarbayjani, Jouyban, 2015).
5. Conclusion
The resulting product has composition with basic properties of a lubricating composite. The main components of SCSP are surfactant-associated proteins and phospholipids. Physical and chemical properties correspond to the characteristics of natural lubricant – the synovial fluid of articular cartilage. Therefore, this product can be tested as a potential component of synovial fluid prosthetic and other biomedical products.
6. Acknowledgements
The reported study was particularly supported by Foundation for Assistance to Small Innovative Enterprises in Science and Technology.
References
Andrades et al., 2012 - Andrades J.A., Motaung S.C., Jiménez-Palomo P. (2012). Induction of superficial zone protein (SZP)/lubricin/PRG 4 in muscle-derived mesenchymal stem/progenitor cells by transforming growth factor-β1 and bone morphogenetic protein-7. Arthritis Res. Ther. 14(2), R72.
Antonov, 2013 - Antonov D.A. (2013). Molecular mechanisms of the lubrucating function of the synovial fluid control Eur. J. Mol. Biotech. 1(2), pp. 48-57.
Ayhan et al., 2014 - Ayhan E., Kesmezacar H., Akgun I. (2014). Intraarticular injections (corticosteroid, hyaluronic acid, platelet rich plasma) for the knee osteoarthritis. World J. Orthop. 5(3), pp. 351–361. doi: 10.5312/wjo.v5.i3.351
Blanco, Pérez-Gil, 2007 - Blanco O., Pérez-Gil J. (2007). Biochemical and pharmacological differences between preparations of exogenous natural surfactant used to treat respiratory distress syndrome: role of the different components in an efficient pulmonary surfactant. Eur. J. Pharmacol. 568(1-3), pp. 1-15.
Casals, Cañadas, 2012 - Casals C, Cañadas O. (2012) Role of lipid ordered/disordered phase coexistence in pulmonary surfactant function. Biochim Biophys Acta. 2012 Nov;1818(11):2550-2562. doi: 10.1016/j.bbamem.2012.05.024
Dicker et al., 2014 - Dicker K.T., Gurski L.A., Pradhan-Bhatt S. et al. (2014). Hyaluronan: a simple polysaccharide with diverse biological functions.Acta Biomater. 10(4), pp. 1558–1570. doi: 10.1016/j.actbio.2013.12.019
Fathi-Azarbayjani, Jouyban, 2015 - Fathi-Azarbayjani A., Jouyban A. (2015). Surface tension in human pathophysiology and its application as a medical diagnostic tool. Bioimpacts. 5(1), pp. 29–44. doi: 10.15171/bi.2015.06
Flannery et al., 2009 - Flannery C.R., Zollner R., Corcoran C. et al. (2009). Prevention of cartilage degeneration in a rat model of osteoarthritis by intraarticular treatment with recombinant lubricin. Arthritis Rheum. 60 (4), pp. 840-847.
Greene et al., 2011 - Greene G.W., Banquy X., Lee D.W. et al. (2011). Adaptive mechanically controlled lubrication mechanism found in articular joints.Proc. Natl. Acad. Sci. USA. 108(13), pp. 5255–5259.
Hui et al., 2012 - Hui A.Y., McCarty W.J., Masuda K. et al. (2012). A systems biology approach to synovial joint lubrication in health, injury, and disease. Wiley Interdiscip. Rev. Syst. Biol. Med. 4(1). pp. 15–37.
Hwang et al., 2015 - Hwang J., Jeong Y., Park J.M., et al. (2015). Biomimetics: forecasting the future of science, engineering, and medicine. Int. J. Nanomedicine. 10: 5701–5713. doi: 10.2147/IJN.S83642
Knöspel et al., 2016 - Knöspel F., Jacobs F., Freyer N. et al. (2016) In vitro model for hepatotoxicity studies based on primary human hepatocyte cultivation in a perfused 3D bioreactor system. Int. J. Mol. Sci. 17(4): 584. doi: 10.3390/ijms17040584
Kosinska et al., 2013 - Kosinska M.K., Liebisch G., Lochnit G. et al. (2013). A lipidomic study of phospholipid classes and species in human synovial fluid. Arthritis Rheum. 65(9), pp. 2323-2333.
Lopez-Rodriguez, Pérez-Gil, 2014 - Lopez-Rodriguez E, Pérez-Gil J. (2014). Structure-function relationships in pulmonary surfactant membranes: from biophysics to therapy. Biochim Biophys Acta. 1838(6), pp. 1568-1585. doi: 10.1016/j.bbamem.2014.01.028
Lu, 2009 - Lu K.W., Pérez-Gil J., Taeusch H.W. (2009). Kinematic viscosity of therapeutic pulmonary surfactants with added polymers. Biochim Biophys Acta. 1788(3), pp. 632–637. doi: 10.1016/j.bbamem.2009.01.005
Ludwig et al., 2015 - Ludwig T.E., Hunter M.M., Schmidt T.A. (2015). Cartilage boundary lubrication synergism is mediated by hyaluronan concentration and PRG4 concentration and structure. BMC Musculoskelet Disord. 16, e386. doi: 10.1186/s12891-015-0842-5
McNary et al., 2012 - McNary S.M., Athanasiou K.A., Reddi A.H. (2012). Engineering lubrication in articular cartilage. Tissue Eng. Pt B. Rev. 18(2), pp. 88–100.
Nakahara et al., 2009 - Nakahara H., Lee S., Shibata O. (2009). Pulmonary surfactant model systems catch the specific interaction of an amphiphilic peptide with anionic phospholipids. Biophys. J. 96(4), pp. 1415–1429. doi: 10.1016/j.bpj.2008.11.022
Novochadov et al., 2014 - Novochadov V.V., Bovol’skaya K.A., Lipnitzkaya S.A. et al. (2014). Different phenotype of chondrocytes in articular cartilage: mapping, possible mechanisms, and impact to implant healing. Eur. J. Mol. Biotech. 2(4), pp. 210-222.
Park et al., 2016 - Park K.D., Wang X., Lee J.Y., et al. (2016). Research trends in biomimetic medical materials for tissue engineering: commentary.Biomater Res. 20: 8. doi: 10.1186/s40824-016-0053-7
Rantamäki et al., 2011 - Rantamäki A.H., Telenius J., Koivuniemi A. et al. (2011). Lessons from the biophysics of interfaces: lung surfactant and tear fluid. Prog Retin Eye Res. 30(3), pp. 204-215. doi: 10.1016/j.preteyeres.2011.02.002.
Sarker et al., 2011 - Sarker M., Jackman D., Booth V. (2011). Lung surfactant protein A (SP-A) interactions with model lung surfactant lipids and an SP-B fragment. Biochemistry. 50(22), pp. 4867–4876.
Schenck, Fiegel, 2016 - Schenck D.M., Fiegel J. (2016). Tensiometric and phase domain behavior of lung surfactant on mucus-like viscoelastic hydrogels. ACS Appl. Mater. Interfaces. 8(9), pp. 5917-5928. doi: 10.1021/acsami.6b00294
Shen, Chen, 2014 - Shen J., Chen D. (2014). Recent progress in osteoarthritis research. J. Am. Acad. Orthop. Surg. 22(7), pp. 467–468.
Smith et al., 2013 - Smith A.M., Fleming L., Wudebwe U. et al. (2013). Development of a synovial fluid analogue with bio-relevant rheology for wear testing of orthopaedic implants. J. Mech. Behav. Biomed. Mater. 18 (32C), pp. 177-184.
Sui et al., 2016 - Sui T., Song B., Wen Y., Zhang F. (2016). Bifunctional hairy silica nanoparticles as high-performance additives for lubricant. Sci. Rep. 6, e22696. doi: 10.1038/srep22696
Valentín-Vargas et al., 2012 - Valentín-Vargas A., Toro-Labrador G., Massol-Deyá A.A. (2012). Bacterial community dynamics in full-scale activated sludge bioreactors: operational and ecological factors driving community assembly and performance. PLoS One. 7(8): e42524. doi: 10.1371/journal.pone.0042524
Wang, 2014 - Wang J., Lü D., Mao D., Long M. (2014). Mechanomics: an emerging field between biology and biomechanics. Protein Cell. 5(7), pp. 518–531.
Zhang et al., 2016 - Zhang W., Ouyang H., Dass C.R., Xu J. (2016). Current research on pharmacologic and regenerative therapies for osteoarthritis.Bone Res. 4, e15040. doi: 10.1038/boneres.2015.40
Zhu et al., 2015 - Zhu J., Lei P., Hu Y. (2015). Intraarticular hyaluronate injection for knee osteoarthritis—reconsider the rationale. Ann. Transl. Med. 3(15), e214. doi: 10.3978/j.issn.2305-5839.2015.07.21
УДК 57.05: 616.72-008.8
Технология получения и физико-химические свойства композиции,
содержащей белки сурфактанта
Валерий Валерьевич Новочадов a , * ,Павел Андреевич Крылов а
а Волгоградский государственный университет, Российская Федерация
Аннотация. В работе описана методика получения из легких млекопитающих композиции с высоким содержанием фосфолипидов (до 36 %) и белков сурфактанта (до 2 %) в пересчете на лиофилизат. Основные физико-химические характеристики композиции (плотность, вязкость, коэффициент поверхностного натяжения и коэффициент трения скольжения) свидетельствуют о высокой лубрикативной способности полученного продукта. Эти свойства сохраняются при смешивании с нативной синовиальной жидкостью человека в разведении до 1: 9 включительно. Полученные данные позволяют считать полученную композицию, содержащую фосфолипиды и белки сурфактанта, вариантом бионического лубриканта, пригодного для проведения испытаний в качестве потенциального протеза синовиальной жидкости в травматологии и ортопедии, компонента косметических средств или средства, увеличивающую стабильность клеточной суспензии при культивировании в биореакторах.
Ключевые слова: легочный сурфактант, белки сурфактанта, фосфолипиды, граничная смазка, вязкость, трение скольжения, трибология, суставной хрящ; тканевая инженерия хряща.