2 June 30, 2016
Articles and Statements
1. Oleg Mosin, Ignat Ignatov
Evaluation of Biosynthetic Pathways of 2Н- and 13С-Labeled Amino Acids by an Obligate Methylotrophic Bacterium Methylobacillus Flagellatum and a Facultative Methylotrophic Bacterium Brevibacterium Methylicum
European Journal of Molecular Biotechnology, 2016, Vol.(12), Is. 2, pp. 58-76.
2. Valery V. Novochadov, Pavel A. KrylovEuropean Journal of Molecular Biotechnology, 2016, Vol.(12), Is. 2, pp. 58-76.
Abstract:
By the method of electron impact mass-spectrometry was studied the pathways of biosynthesis of 2H, 13C-labeled amino acids of a facultative methylotrophic bacterium Brevibacterium methylicum and an obligate methylotrophic bacterium Methylobacillus flagellatum obtained on growth media containing as a source of stable isotopes [2H]methanol, [13C]methanol and 2H2O. For mass-spectrometric analysis the multicomponential mixtures of 2H- and 13C-labeled amino acids, derived from cultural media and protein hydrolysates after hydrolysis in 6 M 2HСl (3 % phenol) and 2 M Ва(OH)2 were modified into N-benzyloxycarbonyl-derivatives of amino acids as well as into methyl esters of N-5-(dimethylamino)naphthalene-1-sulfonyl chloride (dansyl) derivatives of [2H, 13С]amino acids, which were preparative separated using a method of reverse-phase HCLP. Biosynthetically obtained 2H- and 13C-labeled amino acids represented the mixtures differing in quantities of isotopes incorporated into molecule. The levels of 2H and 13С enrichment of secreted amino acids and amino acid resigues of protein were found to vary from 20,0 atom % to L-leucine/isoleucine up to 97,5 atom % for L-alanine depending on concentration of 2H- and 13C-labelled substrates.
By the method of electron impact mass-spectrometry was studied the pathways of biosynthesis of 2H, 13C-labeled amino acids of a facultative methylotrophic bacterium Brevibacterium methylicum and an obligate methylotrophic bacterium Methylobacillus flagellatum obtained on growth media containing as a source of stable isotopes [2H]methanol, [13C]methanol and 2H2O. For mass-spectrometric analysis the multicomponential mixtures of 2H- and 13C-labeled amino acids, derived from cultural media and protein hydrolysates after hydrolysis in 6 M 2HСl (3 % phenol) and 2 M Ва(OH)2 were modified into N-benzyloxycarbonyl-derivatives of amino acids as well as into methyl esters of N-5-(dimethylamino)naphthalene-1-sulfonyl chloride (dansyl) derivatives of [2H, 13С]amino acids, which were preparative separated using a method of reverse-phase HCLP. Biosynthetically obtained 2H- and 13C-labeled amino acids represented the mixtures differing in quantities of isotopes incorporated into molecule. The levels of 2H and 13С enrichment of secreted amino acids and amino acid resigues of protein were found to vary from 20,0 atom % to L-leucine/isoleucine up to 97,5 atom % for L-alanine depending on concentration of 2H- and 13C-labelled substrates.
Production Technology and Physicochemical Properties of Composition Containing Surfactant Proteins
European Journal of Molecular Biotechnology, 2016, Vol.(12), Is. 2, pp. 77-84.
3. Natalya A. Sidorova, Philip D. VoronovEuropean Journal of Molecular Biotechnology, 2016, Vol.(12), Is. 2, pp. 77-84.
Abstract:
The article describes a production method of substance containing great amount of phospolipids (up to 36 %) and surfactant proteins (up to 2 %) in terms of lyophilisate composition. Basic physical and chemical characteristics of the substance (density, viscosity, surface tension and the coefficient of sliding friction) indicate a high lubricant capacity of the derived product. These properties are kept when mixed with native human synovial fluid in the ratio of 1 to 9 inclusive. The obtained data allows to consider the derived composition, containing surfactant proteins and phospholipids, a variety of bionic lubricant suitable for testing as a potential equivalent of synovial fluid which can be used in traumatology and orthopedics, a cosmetic component or agent which increases the stability of the cell suspension during culturing in bioreactors.
The article describes a production method of substance containing great amount of phospolipids (up to 36 %) and surfactant proteins (up to 2 %) in terms of lyophilisate composition. Basic physical and chemical characteristics of the substance (density, viscosity, surface tension and the coefficient of sliding friction) indicate a high lubricant capacity of the derived product. These properties are kept when mixed with native human synovial fluid in the ratio of 1 to 9 inclusive. The obtained data allows to consider the derived composition, containing surfactant proteins and phospholipids, a variety of bionic lubricant suitable for testing as a potential equivalent of synovial fluid which can be used in traumatology and orthopedics, a cosmetic component or agent which increases the stability of the cell suspension during culturing in bioreactors.
Results of the Study of Mutagenic Effects of Microbial Polysaccharides
European Journal of Molecular Biotechnology, 2016, Vol.(12), Is. 2, pp. 85-90.
4. European Journal of Molecular Biotechnology, 2016, Vol.(12), Is. 2, pp. 85-90.
Abstract:
The article presents the results of a study of mutagenic effects of Pseudomonas alcaligenеs polysaccharides. Pseudomonas genus – non-fermentative ubiquitous bacteria, having specific metabolic cycles and unique physical, chemical and biological properties was used as a producer of natural exopolysaccharides. In an experiment using the Ames test, three variants of test compounds were studied: 1. a compound of the Pseudomonas alcaligenes biofilm, 2. exopolysaccharide matrix and the microorganism cell wall compound, and 3. actually the microbial exopolysaccharide. In all cases the lack of mutagen action of polysaccharides of Pseudomonas alcaligenes is proved that make them perspective for use as nanomaterials of new generation – alternative wound coverings.
The article presents the results of a study of mutagenic effects of Pseudomonas alcaligenеs polysaccharides. Pseudomonas genus – non-fermentative ubiquitous bacteria, having specific metabolic cycles and unique physical, chemical and biological properties was used as a producer of natural exopolysaccharides. In an experiment using the Ames test, three variants of test compounds were studied: 1. a compound of the Pseudomonas alcaligenes biofilm, 2. exopolysaccharide matrix and the microorganism cell wall compound, and 3. actually the microbial exopolysaccharide. In all cases the lack of mutagen action of polysaccharides of Pseudomonas alcaligenes is proved that make them perspective for use as nanomaterials of new generation – alternative wound coverings.
full number