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Abstract

The present review examines several approaches to improve properties of dental implants by
modifying their bioactive surfaces (functionalization) using the techniques of molecular
transplantation. The first group of functional ligands is designed to enhance osseointegration of
implants, it includes growth factors, promoting the formation and bone remodeling: bone
morphogenetic proteins (BMPs), platelet-derived growth factor (PDGF), fibroblast growth factor
(FGF) and their combinations with each other, and several other ones. The second group of
bioactive molecules does not directly stimulate bone formation, but it promotes osteoblast seeding
on the implant surface due to the adhesive properties, thus accelerating osseointegration. Finally,
the third group of substances used to increase the antibacterial properties of coatings, thereby
reducing the formation of bacterial film on the implant surface and the risk of inflammatory
rejection of the implant. Key issues of using biofunctional coatings, despite their obvious promise
today still are relatively high cost, difficulties of controlling properties and its storage between the
fabrication and installation of implants in the bone of the recipient.

Keywords: dental implantation, functional coating, bioactive surface, cellular adhesion,
osseointegration, platelet-derived growth factors, bone morphogenetic proteins.

Introduction

The success of prosthetic dentistry, due to the advent of new diagnostic and therapeutic
technologies have led to the fact that dental implantation claims to be a "gold standard" in the
restoration after lost of teeth. The number of operations in leading dental clinics in the thousands per
year with efficiency of over 95 %, and in some age groups of the urban population in developed
nations, the part of people with dental implants is approaching to 20 % [16, 56].

The long-run objective of dental implantation is a stable recovery of function of dental system
by restoring the three-dimensional dental occlusion, which is unconceivable without the formation
of a strong bond between the implant and the recipient bone, osseointegration [2, 21, 37, 40, 57].
The failures of dental implantation specifically associated with a partial loss of foregoing
connection, with bacterial population of the resulting gaps and with inflammation of surrounding

tissues [49, 55].
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The surface of the metal structures installed in bone tissue is continuously improves. This is
one of the main approaches to solving the defined problem. Ideally, it should be absolutely
biocompatible, have a high specific area and cause intensive bone tissue formation, that is, have
osteoinductive effect [1, 8, 22]. The number of foreign analytical reviews [7, 44, 58] describes ways
to enhance osseointegration by creating biomimetic micro-relief surfaces and by coating implants
of various materials with osteoinductive properties.

Although the number of such modifications is theoretically infinite (calculated in the
hundreds in practice), manufacturers seem to reach the limit improving the osseointegration by
these methods. This is evident from the fact that there are no proven advantages of modified
surfaces over conventional screw implants in a few clinical trials [61, 62].

The surface functionalization usage opens fundamentally different possibilities. The idea is to
use them in a controlled placement on the implant’ surface of active molecules with biological
effect - adhesion, growth factors, etc., which allows the quickest possible osteogenesis initialization
throughout the implant surface. Making the surface of the predefined useful health properties
(functionalization) is achieved in this case by molecular transplantation [3, 52]. This review is
devoted to observe the advantages and unresolved problems of this approach.

1. Functionalization with growth factors

The main purpose of the active biomolecules placement on the implant surface concludes in
diminishing the initial inflammatory response to installation of the implant due to their gradual
release into the tissue. Most intensive bone formation and reduction of surface colonization by
microorganisms resulted from this action. Some growth factors and fragments of the organic matrix
of bone, known biologically active peptides, are suitable on the role of these substances [23, 30].

In the detailed review I. Nishimura [41] described two dozen growth factors somehow
involved in osteogenesis. Nevertheless, at the moment only four growth factors are promising for
the needs of implantology: bone morphogenetic proteins (BMP-2 and BMP-7), fibroblast growth
factor (FGF-2) and platelet-derived growth factor (PDGF-B). Common functional scheme of
molecular interactions in system ‘implant — bone’ presented in Figure.
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Figure. The functional system ‘implant — bone’ can be subdivided into three blocks. Signaling
molecules form the block (I) managing the activity of the two cell populations, osteoblasts and
osteoclasts. Synthesis and/or expression of executive molecules (IT) reflect functional activity of
these cells. A set of indicators the two final characteristics of osseointegration, such as the
formation and the strength of the bond between the implant and the bone (III), can influence the
concentration of signaling molecules through feedback.

i

Transforming growth factor (TGF-p) strongly accelerating the division and differentiation of
many types of mesenchymal cells, was ineffective in these conditions, because of the considerable
chondroinductive effect that could not secure the stability of implant engraftment [4]. Insulin-like
growth factor (IGF-1 and IGF-2) and vascular growth factor (VEGF) have been effective only in
combination with the above factors. Essentials facts about the main growth factors currently used to
stimulate the osseointegration of dental implants are summarized in Table.

Table
Growth factors and biologically active peptides used for molecular transplantation due to
fabrication of dental implants (on clinical trial stage)

Molecules | Mechanism of action | Ref.
Alone growth factors
léllt/l/lg:; Cell differentiation and stimulation of osteogenesis [6, 11, 14, 32, 33]

Mitogenesis and suppression of apoptosis
FGF-2 in osteogenic cell population [25, 35]
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Mitogenesis and chemotaxis of mesenchymal
PDGF-B and osteogenic cells (10,17, 43]
Combinations of growth factors
PDGF-B . . . . .
+ IGF-1 Additional stimulation of osteogenesis and collagen synthesis [45]
BMP-2 Additional stimulation of osteogenic differentiation [2 1
+ VEGF and mineralization of matrix 4> 34, 47
+BP1\‘/£}PF--22 Additional stabilization of osteoblast proliferation [29, 38]
BMP-2 . . . .
+ TGF-p Most intensive production of bone matrix [54]
Adhesive and antibacterial peptides
RGD
YIGSR Most intensive adhesion of matrix proteins to implant surface [18, 36, 52]
REDV
GL13K Protection of implant surface to bacterial colonization [18, 64]

Among the BMPs belonging to the TGF-f superfamily are the most relevant for dental
implantology BMP-2 and BMP-7 isoforms, which proved all the effects of bone formation
stimulation in vivo [4, 39]. Recently a group of Russian scientists has been developed the original
method of producing recombinant human BMP-2 (rhBMP-2) with a high-producing strain based
on Escherichia coli. On the basis of rhBMP-2 the osteoplastic material «Gamalant™ - pasta Forte
Plus" is created. It has high osteoinductive and effectively influence on the process of reparative
osteogenesis [11]. To ensure the growth factor delivery in the osseointegration area, the BMP is
applied to the surface of the implant in the form of a polymer-containing gel or emulsion of a
polyelectrolyte rate of approximately 200 micrograms per one product [14, 31, 65].

Recombinant FGF-2 which increases the number of functional osteoblasts successfully used
in the clinic for the augmentation of the dental arch in patients with periodontitis [25]. It is
contemplated to be a osteoregeneration stimulator when dental implants are installed, but is more
effective against soft tissue contacting with the cervix of the implant [35].

Platelet-derived growth factor (PDGF-B) is a potent mitogen and chemotactic agent for a
variety of mesenchymal cells, including osteoblasts, and therefore its isolated usage, as expected,
will have a certain effect [17]. Recently, Chang et al. [7] have demonstrated for PDGF to be able
stimulating osseointegration of dental implants in vivo. On the other hand, it has been reported
that the isolated recombinant PDGF affects bone formation adversely [27]. The successful attempt
to transfer gene pdgfb to bone marrow mesenchymal stem cells has been reported [10], but their
osteoinductive effect was shown only in rats at volume replacement of bone defects with collagen-
based scaffolds.

In clinics the use of platelet-rich plasma or platelet-fibrin clot may be an equivalent of pure
PDGF usage. This material comprises a mixture of biologically active substances include growth
factors, and the PDGF prevails therein. This method is gaining popularity due to safety and the
possibility of using autologous source of growth factors ex tempore, and it shows good results in a
number of clinical studies [20, 28].

The presence of multiple growth factors involved in bone formation, has pushed developers
to attempts to use them as combinations with complementary effects. Successful combinations are
given in Table 1.

2. Usage of biologically active peptides

Proteins of extracellular bone matrix are logical candidates for molecular transplantation.
Currently, functional coatings made with the inclusion of fibronectin, laminin and vitronectin were
fabricated [1, 12]. Thus, metal processing with fibronectin stimulating osteoblasts differentiation
and tissue mineralization, contributed to strong osseointegration of implants in experimental
models in vivo [48].

Recently, the focus has shifted to the usage of functional domains consisting of only a few
amino acids of the necessary protein because it does not require control of the bioactive group
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spatial accessibility. Arg-Gly-Asp (RGD), the adhesive domain derived from fibronectin and
laminin, is the most successful example of biologically active peptide [36, 52]. Other sequences,
such as Tyr-Ile-Gly-Ser-Arg (YIGSR), or Arg-Glu-Asp-Val (REDV), can also accelerate
osseointegration. Some modifications with covalent peptides binding with coating before the anode
deposition are the most stable [5, 52].

It is known the attempt to include in the coating one of the bisphosphonates (alendronate),
which was able to block fibrogenesis in favor of bone formation. This effect was confirmed at the
culture of mesenchymal stem cells seeded onto titanium with a functional coating [19]. Also using
cell cultures L. Russo et al. [50] showed anchor proteins, which were necessary to start a full
osseointegration, to increase adhesion after raising the number of free amino groups on the
implant surface by reacting HA carbonate with (3-aminopropyl)-trietoksylane.

Some osteoinductive biopolymers, in particular chitosan, are also treated as the substrate
coating. The material has adequate wettability and bioresorption degree. It is capable of inducing
osteogenesis on osteoblast culture [46]. The experiment shows the positive effect of chitosan
surface modification of titanium implants. When titanium implants with bioactive porous surface
and additional fine chitosan coating were installed, the bone formation round them accelerated and
become more intensive in conjunction with morphological markers of strong remodeling and
sealing the surrounding bone [42].

Common problems associated with the use of growth factors and biologically active peptides
can be reduced to implants cost increase, complications with the usage and preservation of the
bioactive material before implantation, and with the insufficiently developed questions of kinetics
and topography of their releasing in tissues around the implant, due to combined application, in
particular - [23, 52]. Apparently, to date, this approach has not yet been able to compete with
varying materials and relief of implants.

3. Antibacterial coating

There are several ways to functionalize the coatings that can be used to significant
improvement the durability and osseointegration of the implant in the body. One of them is to
enhance antibacterial properties, since infection is the second most common cause of implant
failure [53, 60].

In this role, silver ions are the most studied and close to implementation) [9, 13]. Particles of
gold, copper, zinc, SeO;, strontium, cerium, gallium, and a number of more exotic rare earth
metals are also could be potential agents. A number of their potentially useful features are
summarized in a review [26], but it is unlikely that they have near-term clinical applications
because of significant rise the coatings costs.

On the basis of the concept of the surfaces antibacterial properties, K.V. Holmberg et al. [18]
developed coating with GL13K peptide inclusion. Such peptide had been derived from the soluble
protein fraction of the parotid gland. As a coating it showed a high bacteriostatic activity against
Porphyromonas gingivalis, which is the main microorganism associated with peri-implant
pathology. While all the required properties of the implant surface were providing: high
hydrophobicity (1), mechanical and thermal stability (2), resistance to enzymatic degradation (3),
and high osteoinductive effect (4). The coating was recommended for clinical trials.

In a clinical study H. Tsuchiya et al. [59] used commercial dental implants with original
iodine-containing coating in 158 patients with a high risk of postoperative infection. During the
year complications occurred in 3 of 158 cases in main group, and in all 64 cases of implantation
without the iodine-containing coating usage.

Although most of the work supports the idea that the functionalization of the implant surface
can improve and accelerate its osseointegration, the key to the commercial success of this approach
(besides the absolute clench the matter of cost) is to adapt the proposed methods to the surfaces of
the specific dental alloys and to conserve controlled surface properties over the time between the
manufacturing and implantation.

Conclusion

The surface functionalization by dynamically related ligands, possessing adhesive,
modulating cell phenotype and/or antibacterial properties, at least at the level of the preclinical
and first clinical trial, demonstrates the ability to improve the dental implants osseointegration.
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Apparently, controlled surface nanoscale modification of two-dimensional (nanopatterns) and one-
dimensional nature (nano-pores and nano-columns) is promising approach. The key issue, given
the almost infinite possibilities of variation, is to reveal patterns of correlation between the
composition, surface’ fine-texture and the expected biomechanical properties of the implant, the
overall dynamics of osseointegration.
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AnHoTtamua. Hacrosmuii 0630p paccMaTpuUBaeT HECKOJIBKO IOJAXOAOB K YJIYUIIEHUIO
CBOMCTB JIEHTAJIBHBIX HMIUIAHTATOB 32 CUET MOAUMUKANUU HX OHOAKTUBHOW IIOBEPXHOCTH
(byHKIIMOHAITM3AINH) C IIOMOIIBI0 TEXHOJIOTHI MOJIEKYJISIPHOU TpaHCIUIaHTaIuu. [lepBas rpymma
(OYHKIMOHAIBHBIX JIMTAHAOB IPU3BAaHA YCWIUTh OCTEOMHTETPAINIO HMIUIAHTATOB, U
Ipe/icTaBjieHa (aKTOpaMu pOCTa, CIIOCOOCTBYIOIIMMU OOPa30BaHUI0 U PeMOJIeIUPOBAHUIO
KOCTHOM TKaHU: KOCTHBIMU MopdoreHeTnueckumu 6Oenkamu (BMPs), TpomOouTapHbIM
dakropom pocra (PDGF), dakropom pocra ¢pudbpobiacroB (FGF), a Takke UX KOMOWHAIUAMU
MeXy co00i W c pAmoM Apyrux ¢akTopoB pocra. Bropas rpynma GHOAaKTUBHBIX MOJIEKYJT
HanpsIMyI0 He CTHMYJIUPYeT OOpa3oBaHME KOCTHOW TKaHH, HO 3a CUYET CTHUMYJISLIUHU aJre3WH,
CIIOCOOCTBYET YKOPEHEHUI0 OCTe00JIaCTOB HAa IMOBEPXHOCTH MMILIAHTAaTa, TEM CAMbIM YMEHBIIast
CPOKH HACTYIUIEHUsI OCTeOMHTerpanuu. HakoHeIl, TpeThs TPyIa BENIECTB HCIOJIb3YETCS JIA
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yBeJIMUEHHSI aHTHOAKTEPHUATBLHBIX CBOMCTB MOKPBITHH, CITOCOOCTBYET YMEHBIIIEHUIO 00pa30BaHUSA
OaKkTepUaTbHBIX IUIEHOK Ha IIOBEPXHOCTH UMILIAHTAaTa, CHU)KAeT PHUCK PAa3BUTHA €ro
BOCITAJIUTEILHOTO OTTOP)KeHUs. KirtoueBble MPOOJIEMBbI HCIIOJIb30BaHUA OMOGYHKITMOHABHBIX
TOKPBITUIM, HECMOTPsS HAa WX SIBHYIO IEPCHEKTUBHOCTb, Ha CETOJHs IIO-TIPEKHEMY COCTOSAT B
OTHOCHUTEJIBHOH JIOPOTOBU3HE, TPYAHOCTU KOHTPOJIMPOBAHUSA CBOHCTB U UX COXPAaHEHUS B IIEPUO/T
MEKy U3TOTOBJIEHMEM U YCTAHOBKOHM MMILJIAHTATOB B KOCTh PEIUITHEHTA.

KiaioueBble cjioBa: JieHTaJlbHas UMIUIAHTANUsl, (YHKIHOHAJIbHBIE ITOKPBITHUS,
OMOAKTHBHAS ITOBEPXHOCTh, KJIETOUHAs aAre3usi, OCTEOMHTETPAIUsI, TPOMOOIIUTAPHBIH (HaKTOP
pocTa, KOCTHbIE MOPp(OTeHEeTHYECKUE OEJTKH.
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